>

Luminosity flux equation - In astrophysics, the mass–luminosity relation is an equation giving the relationship between a star's mass and its lumi

In astrophysics, the mass–luminosity relation is an

Jan 11, 1997 · The luminosity is proportional to T 4, so star B is 2 4 = 16 times more luminous. More formally, (see "Important Equations" handout sheet). (2) Two stars have the same spectral type, and they have the same apparent brightness (flux). However, star A has a parallax of 1", and star B has a parallax of 0.1". How big is star B relative to star A? Photopic (black line) and scotopic (green line) luminosity functions. The photopic includes the CIE 1931 standard (solid), the Judd-Vos 1978 modified data (dashed), and the Sharpe, Stockman, Jagla & Jägle 2005 data (dotted). The horizontal axis is wavelength in nm. Integrating sphere used for measuring the luminous flux of a light source.. In photometry, luminous flux or luminous power is the ...This equation relates the amount of energy emitted per second from each square meter of its surface (the flux F) to the temperature of the star (T). The total surface area of a spherical star (with radius R) is: Area = 4 π R 2. Combining these equations, the total Stellar Luminosity (energy emitted per second) is therefore:Photon Energy and Flux. 2. Photon Energy and Flux. Light, which we know travels at speed c in a vacuum, has a frequency f and a wavelength λ. Frequency can be related to the wavelength by the speed of light in the equation. The energy of a photon, as described in The Basics of Quantum Theory, is given by the equation.One cannot say more than this, in particular one cannot calculate the luminosity of the galaxy, without knowing more about its spectrum. Also note that the equation above cannot be used to find the ratio of flux in one band to bolometric flux, as I think you are trying to do. To see this, consider that the absolute V-band magnitude and ...The solar luminosity (L ☉) is a unit of radiant flux (power emitted in the form of photons) conventionally used by astronomers to measure the luminosity of stars, galaxies and other celestial objects in terms of the output of the Sun.October 2, 2020. 0. 1152. Light intensity is a physical term that refers to the luminous flux of visible light received per unit area . Referred to as illuminance , the unit is Lux (Lux or lx). It is used to indicate the intensity of light and the amount of illumination of the surface area of the object. In photometry , luminance is the density ...A demand equation is an algebraic representation of product price and quantity. Because demand can be represented graphically as a straight line with price on the y-axis and quantity on the x-axis, a demand equation can be as basic as a lin...Apr 10, 2023 · The formula of absolute magnitude is M = -2.5 x log10 (L/LΓéÇ) Where, M is the absolute magnitude of the star. LΓéÇ is the zero-point luminosity and its value is 3.0128 x 1028 W. Apparent magnitude is used to measure the brightness of stars when seen from Earth. Its equation is m = M - 5 + 5log10 (D) If this is the case, then you fit the observation to BB function to get temperature and scale factor. Then, bolometric flux = flux calculated in step 3 + correction from the edges estimated by the BB-SED. 5. L = flux * area. If you assume spherical symmetry, area = $4 \pi r^2$, where r = luminosity distance in this case. Note that you get the ... Equation 22 - Luminosity and Flux We can see from the equation that flux decreases as distance increases and we can also see that distance is squared. It follows from this that light obeys the inverse square law - the observed flux from a star is inversely proportional to the square of the distance between it and an observer.The Luminous Flux is defined as the total quantity of the light energy emitted per second from a body and is represented as F = (A * I v)/(L ^2) or Luminous Flux = (Area of Illumination * Luminous Intensity)/(Length of Illumination ^2).Area of illumination refers to the size or extent of the space covered by light from a source, determining the reach and coverage of light in that …Distances calculated using flux and luminosity measurements rely on astronomical objects called standard candles, that is objects of known luminosity. If the brightness is measured, and the luminosity is known, the distance may be calculated. In the 1890s, Scottish astronomer Williamina Fleming and the American Edward Pickering, working at ...The solar luminosity (L ☉) is a unit of radiant flux (power emitted in the form of photons) conventionally used by astronomers to measure the luminosity of stars, galaxies and other celestial objects in terms of the output of the Sun.Apparent magnitude is a logarithmic measure of the flux density of the luminosity of objects as seen from the earth. Absolute magnitude aims to eliminate the ...This page titled 1.6: Relation between Flux and Intensity is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.Luminous flux is the measure of brightness of a light source in terms of energy being emitted. Luminous flux, in SI units, is measured in the lumen (lm). It is a measurement of energy released in the form of visible light from a light-producing source. Luminous flux is often a criteria of light bulb comparison. Luminous flux is also known …Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects. In formula form, this means the star's flux = star's luminosity / (4 × (star's distance) 2). ... What is the luminosity of star in Watts that has a flux of 2.7 x 10-8 Watts/meter 2 and is 4.3 light years away from us? A light year is 9.461 trillion kilometers or 9461 trillion meters.Flux is measured in joules per square metre per second (joules/m 2 /s), or watts per square metre (watts/m 2 ). The flux of an astronomical source depends on the luminosity of the object and its distance from …... flux that each unit of surface area gives off. ... Often we prefer to use units of solar luminosity because we can then simplify the equation and get rid of any ...Detailed explanation. The radiant exitance (previously called radiant emittance ), , has dimensions of energy flux (energy per unit time per unit area), and the SI units of …Our predicted numbers of sources in the ExSeSS survey, based on the Georgakakis et al. models, are given in Table 2 and compared to our observed source numbers. We adopt 1 dex wide luminosity bins, with the minimum luminosity corresponding to the flux (for a source at z > 5.7), where the area curve drops to |$0.1{{\ \rm per\ cent}}$| L X = 44.8 ...Intensity vs. luminosity • flux(f) - how bright an object appears to us. Units of [energy/t/area]. The amount of energy hitting a unit area. • luminosity (L) - the total amount of energy leaving an object. Units of [energy/time] Total energy output of a star is the luminosity What we receive at the earth is the apparent brightness. 21 thg 3, 2021 ... ... (luminosity, orbital radius, and orbital eccentricity). I also ... I then call a method, pictured below (calc_flux) to employ the flux equation.If m1 and m2 are the magnitudes of two stars, then we can calculate the ratio of their brightness ( b 2 b 1) using this equation: m 1 − m 2 = 2.5 log ( b 2 b 1) or b 2 b 1 = 2.5 m 1 − m 2. Here is another way to write this equation: b 2 b 1 = ( 100 0.2) m 1 − m 2. Let’s do a real example, just to show how this works. Brightness = Flux. Flux and luminosity. Flux decreases as we get farther from the star – like 1/distance2 . Mathematically, if we have two stars A and B . Flux. Luminosity. = …Classically, the difference in bolometric magnitude is related to the luminosity ratio according to: Mbol,∗ − Mbol,sun = −2.5log10( L∗ Lsun) M b o l, ∗ − M b o l, s u n = − 2.5 l o g 10 ( L ∗ L s u n) In August 2015, the International Astronomical Union passed Resolution B2 [7] defining the zero points of the absolute and ...Spectral luminosity is an intrinsic property of the source because it does not depend on the distance d between the source and the observer—the d 2 in Equation. 2.15 cancels the d-2 dependence of S ν. The luminosity or total luminosity L of a source is defined as the integral over all frequencies of the spectral luminosity:Classically, the difference in bolometric magnitude is related to the luminosity ratio according to: Mbol,∗ − Mbol,sun = −2.5log10( L∗ Lsun) M b o l, ∗ − M b o l, s u n = − 2.5 l o g 10 ( L ∗ L s u n) In August 2015, the International Astronomical Union passed Resolution B2 [7] defining the zero points of the absolute and ...The Friedmann equation is rewritten as H2 = H2 0 " ›Kz 2 + X i ›i(1+ z)3(1+wi) #; where ›i · ‰i=3M2 PH 2 0 and ›K = 1¡ P i ›i. Using this equation, flnd the expression for the luminosity distance dL = a0(1+ z)fK(z) as a function of the redshift z. (4) For simplicity, we consider the °at universe (K = 0), fllled with Matter and ... 9 thg 9, 2013 ... This formula permits us relate the experimentally measured cross section to theory. In the devel- opment of scattering theory in QM, Nt = 1 (one ...Minimum source frame energy over which luminosity is calculated. par2=Emax: Maximum source frame energy over which luminosity is calculated. par3=Distance: Distance to the source in units of kpc. par4=lg10Lum: log (base 10) luminosity in units of erg/s.The Friedmann equation is rewritten as H2 = H2 0 " ›Kz 2 + X i ›i(1+ z)3(1+wi) #; where ›i · ‰i=3M2 PH 2 0 and ›K = 1¡ P i ›i. Using this equation, flnd the expression for the luminosity distance dL = a0(1+ z)fK(z) as a function of the redshift z. (4) For simplicity, we consider the °at universe (K = 0), fllled with Matter and ...Equation 22 - Luminosity and Flux We can see from the equation that flux decreases as distance increases and we can also see that distance is squared. It follows from this that light obeys the inverse square law - the observed flux from a star is inversely proportional to the square of the distance between it and an observer.Nov 5, 2018 · Defining Equation SI Units Dimension Luminous energy Q v: J = lm s [M] [L] 2 [T]-2: Luminous flux, luminous power F, Φ v: cd sr = lm = J s-1 [Φ] Luminous intensity I v: cd = lm sr-1 [Φ] Luminance L v: cd m-2 [Φ] [L]-2: Illuminance (light incident on a surface) E v: lx = lm m-2 [Φ] [L]-2: Luminous Emittance (light emitted from a surface M v ... Luminosity, L, is a measure of the total amount of energy radiated by a star or other celestial object per second. This is therefore the power output of a star. A star's power …Measuring Luminosity To measure the Luminosity of a star you need 2 measurements: the Apparent Brightness (flux) measured via photometry, and the Distance to the star measured in some way Together with the inverse square law of brightness, you can compute the Luminosity as All related (31). Recommended. Profile photo for ChatGPT. ChatGPT. ·. Bot. This formula is known as the luminosity-flux-distance inverse square law.Both Fλ and F are usually referred to as the monochromatic flux (or flux density) and, as the monochromatic fluxes of astronomical sources are small, the jansky (Jy) unit is often used, where 1 Jy = 10 -26 W m -2 Hz -1. F and Fλ are related by the equation: F = Fbol = F d = Fλ d λ. The flux, F, in the above equation is also sometimes ... ... calculation of fluxes, luminosities and sensitivity maps. This is because at ... For fixed obscuration and intrinsic luminosity the flux of higher redshift AGN is ...Astronomical terms and constants Units of length 1 AU ≈ 1.5×1013cm = one astronomical unit, i.e. the earth–sun distance. 1 pc = 2.06×105AU = 3.1×1018cm = one parsec, i.e. a distance to a star with a parallax equal to one second of arc. A parallax is an angle at which the radius of earth’s orbit around the sun isThe luminosity of a star, on the other hand, is the amount of light it emits from its surface. The difference between luminosity and apparent brightness depends on distance. ... A = 4 π d 2 This equation is not rendering properly due to an incompatible browser. ... The apparent brightness is often referred to more generally as the flux, and is ...Equation 20 - Pogsons Relation. Pogson's Relation is used to find the magnitude difference between two objects expressed in terms of the logarithm of the flux ratio. Magnitude Scale and Distance Modulus in Astronomy. Absolute Magnitude Relation. Equation 23 - Absolute Magnitude Relation.Equation 20 - Pogsons Relation. Pogson's Relation is used to find the magnitude difference between two objects expressed in terms of the logarithm of the flux ratio. Magnitude Scale and Distance Modulus in Astronomy. Absolute Magnitude Relation. Equation 23 - Absolute Magnitude Relation.the relative brightness for each distance using the formula B/B 0 = 1/A. Before having students do the calculations, discuss with them the meaning behind the ... This is called luminosity. 9 So, what we want to calculate is the brightness relative to some standard brightness (say the brightness of the bulb on the graph paper at 10 cm). Let’s7. LUMINOSITY DISTANCE. The luminosity distance D L is defined by the relationship between bolometric (ie, integrated over all frequencies) flux S and bolometric luminosity L: (19) It turns out that this is related to the transverse comoving distance and angular diameter distance by (20) (Weinberg 1972, pp. 420-424; Weedman 1986, pp. 60-62).Flux Flux (or radiant flux), F, is the total amount of energy that crosses a unit area per unit time. Flux is measured in joules per square metre per second (joules/m 2 /s), or watts per square metre (watts/m 2 ).Of course, you can write this equation in terms of the luminosities of the two stars by multiplying the two fluxes by a common factor of 4πr. 4 π r . m−m0 ...This equation relates the amount of energy emitted per second from each square meter of its surface (the flux F) to the temperature of the star (T). The total surface area of a spherical star (with radius R) is: Area = 4 π R …Radiant flux: Φ e: watt: W = J/s M⋅L 2 ⋅T −3: Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy. Spectral flux: Φ e,ν: watt per hertz: W/Hz: M⋅L 2 ⋅T −2: Radiant flux per unit frequency or wavelength. The latter is commonly ...Radiant flux is a term that describes the amount of radiant energy that is emitted, reflected, transmitted, or received by an object per unit of time. Radiant energy is the energy carried by electromagnetic waves, such as light, radio waves, microwaves, infrared, ultraviolet, and X-rays. Radiant flux is also known as radiant power or optical ...In astronomy, a luminosity function gives the number of stars or galaxies per luminosity interval. Luminosity functions are used to study the properties of large groups or classes of objects, such as the stars in clusters or the galaxies in the Local Group.. Note that the term "function" is slightly misleading, and the luminosity function might better be described as …R, and the stellar luminosity L. These four parameters may be calculated when the differential equations of stellar structure are solved. Notice, that only two of those parameters, R and L are directly observable. Also notice, that the equations for spherically symmetric stars (10 or 11) may be8 thg 2, 2023 ... We can rearrange the luminosity-flux equation to solve for L: L = 4πr^2F The radius of the Sun is about 6.96 x 10^8 meters. Plugging in the ...1. Advanced Topics. 2. Guest Contributions. Physics - Formulas - Luminosity. Based on the Inverse Square Law, if we know distance and brightness of a star, we can determine its Luminosity (or actual brightness): We can also determine Luminosity by a ratio using the Sun: Back to Top. In astronomy, a luminosity function gives the number of stars or galaxies per luminosity interval. [1] Luminosity functions are used to study the properties of large groups or classes of objects, such as the stars in clusters or the galaxies in the Local Group. Note that the term "function" is slightly misleading, and the luminosity function ...May 13, 2013 · Fv = ΔE / Δt·ΔA·Δv Bolometric Flux is the amount of energy across all frequencies. F bol = ∫ ∞ Fv dv-----Monochromatic Luminosity is the energy emitted by the source in unit time, per unit frequency. Lv = ΔE / Δt·Δv Bolometric Luminosity is the amount of energy across all frequencies. L bol = ∫ ∞ Lv dv If m1 and m2 are the magnitudes of two stars, then we can calculate the ratio of their brightness ( b 2 b 1) using this equation: m 1 − m 2 = 2.5 log ( b 2 b 1) or b 2 b 1 = 2.5 m 1 − m 2. Here is another way to write this equation: b 2 b 1 = ( 100 0.2) m 1 − m 2. Let’s do a real example, just to show how this works.laws / equations needed to describe structure: • Conservation of mass • Conservation of energy (at each radius, the change in the energy flux equals the local rate of energy release) • Equation of hydrostatic equilibrium (at each radius, forces due to pressure differences balance gravity) • Equation of energy transport (relation between theJan 14, 2003 · (1) Luminosity is the rate at which a star radiates energy into space. We know that stars are constantly emitting photons in all directions. The photons carry energy with them. The rate at which photons carry away energy from the star is called the star's luminosity. Luminosity is frequently measured in watts (that is, joules per second). Minimum source frame energy over which luminosity is calculated. par2=Emax: Maximum source frame energy over which luminosity is calculated. par3=Distance: Distance to the source in units of kpc. par4=lg10Lum: log (base 10) luminosity in units of erg/s.Calculate the total luminosity (in units of energy/time) emitted by the ... You should recover the usual blackbody flux formula, σT4. By definition, σT4 ...If this is the case, then you fit the observation to BB function to get temperature and scale factor. Then, bolometric flux = flux calculated in step 3 + correction from the edges estimated by the BB-SED. 5. L = flux * area. If you assume spherical symmetry, area = $4 \pi r^2$, where r = luminosity distance in this case. Note that you get the ... The luminosity of the streetlamp is L = 1000 W = 10 3 W. The brightness is b = 0.000001 W/m 2 = 10-6 = W/m 2. So the distance is given by d 2 = (10 3 W)/(4 Pi x 10-6 W/m 2). Since 4 Pi is approximately 10, this is d 2 = (10 3 …So, begin by determining the flux of light from the star which reaches the planet. ... Q: Can you write an equation for the ratio of the luminosity of the planet ...The observed strength, or flux density, of a radio source is measured in Jansky. The spectral index is typically -0.7. Related formulas. Variables. Lv ...The unit lumen is then equal to cd x sr. The abbreviation is lm and the symbol is Φ v. In terms of radiant power (also called radiant flux) it can be expressed as: Luminous flux …Both Fλ and F are usually referred to as the monochromatic flux (or flux density) and, as the monochromatic fluxes of astronomical sources are small, the jansky (Jy) unit is often used, where 1 Jy = 10 -26 W m -2 Hz -1. F and Fλ are related by the equation: F = Fbol = F d = Fλ d λ. The flux, F, in the above equation is also sometimes ...5 thg 6, 2023 ... Luminosity equation. We can derive the formula for stellar luminosity directly from the Stefan-Boltzmann law. This law states that for a black ...Every reaction in the sun has the energy equivalent to 0.03 mp, and generates 2 neutrinos per reaction. Calculate the number of neutrinos per second, and calculate the neutrino flux at Earth. Astronomy generally uses the CGS (centimeter gram second) system, so just be aware of that when I do my calculations. Homework Equations The Attempt at a ...The SI unit of Luminance is candela per square meter (cd/m 2). The measure of the total light output of a luminous source is known as Luminous Flux. The luminance of the surface depends on the following factors. Nature of the surface. The Luminous flux that is incident on the unit area of the surface.Example: A surface with a luminance of say 100 cd/m 2 (= 100 nits, typical PC monitor) will, if it is a perfect Lambert emitter, have a luminous emittance of 100π lm/m 2. If its area is 0.1 m 2 (~19" monitor) then the total light emitted, or luminous flux, would thus be 31.4 lm. See also. Transmittance; Reflectivity; Passive solar building designLuminous flux, luminous power Φ v: lumen (= candela steradian) lm (= cd⋅sr) J: Luminous energy per unit time Luminous intensity: I v: candela (= lumen per steradian) cd (= lm/sr) J: Luminous flux per unit solid angle: Luminance: L v: candela per square metre: cd/m 2 (= lm/(sr⋅m 2)) L −2 J: Luminous flux per unit solid angle per unit ...Using the formulas introduced in the previous section, you can determine both the flux and the luminosity produced by the specified surface. To begin, calculate the flux: F &equals; &sigma; ⋅ T 4. F &equals; 5.67 × 10 − 8 W K 4 m 2 1000 K 4. F &equals; 56700 W &sol; m 2. You can now use this result to determine the luminosity: L &equals; 4 ...Intensity vs. luminosity • flux(f) - how bright an object appears to us. Units of [energy/t/area]. The amount of energy hitting a unit area. • luminosity (L) - the total amount of energy leaving an object. Units of [energy/time] Total energy output of a star is the luminosity What we receive at the earth is the apparent brightness. The response of the eye as a function of frequency is called the luminous efficacy of the eye. It has been tabulated for both the light-adapted ( photopic) case and the dark-adapted ( scotopic) case. Source: Table 6-1 of Williamson & Cummins, Light and Color in Nature and Art, Wiley, 1983. The Photopic conversion (lm/W) is obtained by ...R, and the stellar luminosity L. These four parameters may be calculated when the differential equations of stellar structure are solved. Notice, that only two of those parameters, R and L are directly observable. Also notice, that the equations for spherically symmetric stars (10 or 11) may beRearranging this equation, knowing the flux from a star and its distance, the luminosity can be calculated, L = 4 π F d 2. These calculations are basic to stellar astronomy. Schematic for calculating the parallax of a star. Here are some examples. If two stars have the same apparent brightness but one is three times more distant than the other ... Jan 31, 2019 · 1. Flux is a function of distance and luminosity. F(Ls, d) = Ls 4πd2 F ( L s, d) = L s 4 π d 2. So lets think an example of a distant galaxy and earth. This equation gives us the measured flux on earth and d d represents the distance between us. Now we can write this distance in terms of flux. d(F,Ls) = Ls 4πF− −−−√ d ( F, L s) = L ... For the object whose luminosity is know in some way, we can determine its luminosity distance from the measured flux. What you will do in this project is to ...Luminosity, in astronomy, the amount of light emitted by an object in a unit of time. The luminosity of the Sun is 3.846 × 1026 watts (or 3.846 × 1033 ergs per second). Luminosity is an absolute measure of radiant power; that is, its value is independent of an observer’s distance from an object.This equation relates the amount of energy emitted per second from each square meter of its surface (the flux F) to the temperature of the star (T). The total surface area of a spherical star (with radius R) is: Area = 4 π R 2. Combining these equations, the total Stellar Luminosity (energy emitted per second) is therefore:However, when I input all of that into the equation, I get 5.21 * 10^36 watts. shiatsu full body massage mat with heat 25.1.1 Luminosity & Radiant Flux ...The Luminous Flux is defined as the total quantity of the light energy emitted per second from a body and is represented as F = (A * I v)/(L ^2) or Luminous Flux = (Area of Illumination * Luminous Intensity)/(Length of Illumination ^2).Area of illumination refers to the size or extent of the space covered by light from a source, determining the reach and coverage of light in that …Luminous intensity is defined as dI=dΨλ / dΩ, where dΨλ is the luminous flux (light energy flux in watts per m2) emitted within a solid angle dΩ. The light energy flux may be expressed in terms of the incident x-ray energy flux and the x-ray absorption and conversion properties of the scintillator (7,8,9). Table of Contents show.Spectral luminosity is an intrinsic property of the source because it does not depend on the distance d between the source and the observer—the d 2 in Equation. 2.15 cancels the d-2 dependence of S ν. The luminosity or total luminosity L of a source is defined as the integral over all frequencies of the spectral luminosity: The luminosity is proportional to T 4, so star B is 2 4 = 16 times more luminous. More formally, (see "Important Equations" handout sheet). (2) Two stars have the same spectral type, and they have the same apparent brightness (flux). However, star A has a parallax of 1", and star B has a parallax of 0.1". How big is star B relative to star A?One cannot say more than this, in particular one cannot calculate the luminosity of the galaxy, without knowing more about its spectrum. Also note that the equation above cannot be used to find the ratio of flux in one band to bolometric flux, as I think you are trying to do. To see this, consider that the absolute V-band magnitude and ...10−4 ph. The lux (symbol: lx) is the unit of illuminance, or luminous flux per unit area, in the International System of Units (SI). [1] [2] It is equal to one lumen per square metre. In photometry, this is used as a measure of the intensity, as perceived by the human eye, of light that hits or passes through a surface. One cannot say more than this, in particular one cannot calculate the luminosity of the galaxy, without knowing, Energy emitted per second (E) = sAT4. Where, s= Stefan’s constant with a value of 5.7 × 10 -, The Friedmann equation is rewritten as H2 = H2 0 " ›Kz 2 + X i ›i(1+ z)3(1+wi) #; where ›i · ‰i=3M2 PH 2 0 and ›K, Radiant flux: Φ e: watt: W = J/s M⋅L 2 ⋅T −3: Radiant energy emitted, reflected, transmitted or received, per unit, 4 π d 2 where f is the flux of the star (i.e. flux determines how , The solar luminosity (L ☉) is a unit of radiant flux (power emitted in the form of photons), A star that is twice as far away appears four times fainter. More generally, the luminosity, , fluxes. Before defining flux, it is important to define luminosity. T, The equation is: F=L/4πd2, where F is the flux, L is the luminosity,, Physics Formulae/Equations of Light. < Physics Formulae. Lead A, by this simple formula: 4 2 4 T R L EQ #1 where L is the lumi, Feb 10, 2017 · Say, you put the planet at 1 AU from the st, In formula form, this means the star's flux = , 5. Exercise 3: From absolute magnitudes to luminosity ratio. There, A star with a radius R and luminosity L has an “effective” temp, The further away it is, the weaker the flux will be. To , Luminous flux is how to measure the perceived power or total amo, Surface brightness. In astronomy, surface brightness (.